Cosmology with BOSS and DES

Erin Sheldon Brookhaven National Laboratory

My Projects

- Dark Energy Survey (DES), co-leading development of lensing pipelines and analysis codes to measure Dark Energy. Zhoaming Ma has joined us working on testing and development.
- Baryon Oscillation Spectroscopic Survey (BOSS), leading the spectroscopic target selection. Primary goal measurement of Dark Energy properties. Zhaoming analysis.
- Working on early development of Large Synoptic Survey Telescope (LSST) lensing pipelines

Dark Energy Survey

- Optical survey of 5000 square degrees in multiple bandpasses.
- 4 meter "Blanco" telescope at Cerro Tololo Inter-American Observatory, Chile.
- First light 2011, running 5 years
- Measure equation of state parameter to 3% using a variety of techniques
- Camera and Telescope upgrades DOE funded

Effects of Dark Energy

- At early times is unimportant to the expansion rate and growth of massive structures
- At late times accelerates the expansion rate, dramatically increasing volume
- Decreases the overall "growth rate" of massive structures.
- Number density of massive structures is decreased relative to equivalent matter only universe

Clusters of Galaxies

Number Density of Galaxy Clusters

- In the early universe clusters form normally
- At late times Dark Energy accelerates the expansion, reducing the number density relative to a matter-only universe
- Number density of clusters with given mass is sensitive to Dark Energy

Image Courtesy SPT

Sheldon et al. 2009a

1pc = 3.26 lyr

SDSS Cluster Lensing

Using existing analysis techniques we can measure the relationship between cluster observables and the total mass

SDSS Cluster Lensing

Once the masses are known, tight constraints on cosmological parameters can be derived

Rozo, et al. 2010

Dark Energy Survey

- We can apply the same analysis in tens of equal volume samples through time
- Combining just lensing probes, constrains w to 3% statistical.
- Use supernovae and priors from other experiments (Planck) to break degeneracies
- Techniques used in the DES will translate naturally to LSST

4m Blanco Telescope Image: David Walker

BOSS Target Selection

- I am in charge of target selection
- BAO feature:
 - Imprinted on the spatial distribution of galaxies (LRGs)
 - Imprinted on the spatial distribution of Gas: LyA Forest (QSOs)
- We must select these objects from the imaging for spectroscopic follow-up.

BOSS Target Selection

- I developed the software framework for target selection
- Incorporated LRG selection (w/Padmanabhan) and various QSO selection methods (w/many others).
- LRGs: straightforward color selection.
- QSOs: Difficult, selecting targets has required significant advancement in this field (~1 thesis)
- Performed testing of algorithms. Tuned selections to proper densities and to maximize efficiency and scientific return.

BOSS Data

- Targets were delivered on time for commissioning last fall.
- We have since begun the "main" survey.
- LRG sample is comparable to existing samples.
- QSO sample is already larger than all existing samples in this difficult redshift range.

My Plans with BOSS

- BOSS is a continuation of the SDSS
- Perform lensing analyses of Galaxy Clusters on ~twice as much data as previous SDSS analysis.
 Sensitive to cosmological parameters.
- Lensing analysis of new LRG sample
- Analyze deeper coadd data using DES pipeline. Study "cosmic shear". Combined analysis with CMB will be sensitive to dark energy
- Data is multi-epoch: Direct test of DES pipelines.

Extra Slides

Computing Proposal

- The DES Weak Lensing Working Group has submitted a proposal for computing support.
- Primarily for WL image processing, secondarily for analysis.
- \$50,000 per year for five years: CPU (70 nodes) and Disk (~200 TB).
- BNL will host at the Brookhaven Computing Facility
- 40% bulk discounts, free power, cooling, and infrastructure support.